XPS and laser Raman analysis of hydrogenated amorphous carbon films

*School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
Interface Analysis Centre, University of Bristol, Oldbury House, 121 St Michael’s Hill, Bristol BS2 8BS, UK

Abstract

Hydrogenated amorphous carbon films were deposited in an RF parallel plate plasma reactor using various values of process pressure (10–50 mTorr) and DC self-bias (0–300 V). The films were then analysed by laser Raman spectroscopy (LRS) at 514.5 nm and X-ray photoelectron spectroscopy (XPS). Values for the ratio of sp²:sp³ bonded carbon in the various films were obtained by suitable fitting of the XPS carbon 1s energy peaks, using a three-curve fitting procedure, which recognises a portion of the peak attributable to CO surface bonding. The sp³ content was found to depend upon the DC self bias (and hence the ion impact energy) during deposition, peaking at a value of 81% at approximately 150 V. The softer films grown at lower DC bias values still had an sp³ content of approximately 70%. Microcombustion analysis showed that films deposited with low DC bias contained 7 at.% H compared to less than 2 at.% for films deposited at biases greater than 100 V. This high sp³ content can be explained by H-termination of dangling bonds, suggesting that sp³ content alone is not a reliable indication of film properties. Curve-fittings of LRS spectra of the films showed that the Breit–Wigner–Fano lineshape is inappropriate for use with hydrogen containing films. Fitting using a Gaussian profile gave precise values for the FWHM, intensity, and Stokes’ shift of the G and D-peaks. A linear relationship between the intensity ratio of the D to G peaks and the width of the G peak was found for films deposited at high DC bias (with low H content), but not for films deposited at low DC bias. This is consistent with the increased H content of the films causing a change in the elastic constants and/or affecting the stress levels within the films.

1. Introduction

Diamond-like carbon (DLC) thin films are becoming increasingly important in many forms of industrial applications, including wear-resistant coatings for hard-disk drives and optical components, as well as in semiconductor devices [1–3]. However, the term DLC covers a range of materials with properties that can vary from those similar to graphite to those approaching those of natural diamond. Hydrogen-free DLC films (also known as amorphous carbon films, a-C [4], are believed to consist of a mainly graphitic sp² carbon matrix containing nm-sized clusters of sp³ diamond-like carbon. Hydrogenated DLC films (also known as hydrogenated amorphous carbon films, a-C:H) add yet more degrees of complexity to the possible structure of the films [5]. One of the most crucial factors determining the film properties is the ratio of sp²:sp³ bonded carbon. In a-C:H films, laser Raman spectroscopy (LRS) can be used to determine this ratio [6], but in a-C:H films more sophisticated techniques such as electron energy loss spectroscopy (EELS) or X-ray photoelectron spectroscopy (XPS) often need to be used. In this paper we use XPS in conjunction with LRS to study the sp²:sp³ ratio in a-C:H films grown with a variety of ion impact energies and deposition conditions, and to gain an insight into the structure and bonding within these films.

2. Experimental

a-C:H films were deposited onto single crystal Si (100) substrates using a capacitive-coupled radio frequency (RF) parallel-plate plasma reactor. The process gas was methane (CH₄) at a flow rate of 30 sccm and a pressure ranging from 10–50 mTorr. RF power was used to strike a plasma and the ions were then accelerated onto the lower electrode by the DC self-bias. The substrate sat on the lower electrode, and the value of the DC bias in this system thus gives an approximate...
measure of the average impact energy of the carbon-containing ions upon the Si surface [7,8]. The a-C:H films were deposited for 30 min, yielding an approximate thickness of 0.5 μm, as measured by cross-sectional SEM. The films were smooth, and varied in hardness depending upon the DC bias used. Films deposited at DC bias values less than 100 V were soft and easily scratched, whereas those deposited at higher biases could not be scratched with tweezers.

XPS was performed using the Mg K-α-line, which analysed approximately the top 40 Å of the film. The spectra were dominated by the C 1s peak at approximately 285 eV (see Fig. 1). Calibration experiments using CVD diamond and graphite powder showed that the C 1s peak from diamond was located at 287 eV with a full-width half-maximum (FWHM) value of 1.1 eV, and that the C 1s peak from graphite was located at 284 eV (FWHM=0.98 eV). The 3 eV separation between these two peaks is largely due to charging effects on the insulating diamond film, but is also partly due to the different chemical environment of the C 1s electron with respect to the hybridisation of the orbital. Also present was the O 1s peak at 531 eV, due to surface chemisorbed oxygen species. If it is assumed that all the oxygen atoms in these films are of the same hybridisation, then the difference in the energies of the O 1s peak in the diamond and graphite spectra should be equal to the shift of the diamond C 1s, due to charging effects. This difference was used to give an estimate of the offset due to charging, and was used to correct subsequent spectra. We note that this correction assumes that the surface charging is spatially homogeneous, which we believe is valid given the uniformity of the film deposition.

The lineshapes of the O 1s and C 1s peaks give information about the chemical bonding environment, and fitting these peaks to suitable functions allows this bonding information to be extracted. Previous workers [9] have fitted two Voigt curves, one corresponding to sp^2 hybridisation with a FWHM the same as that for graphite, and the other corresponding to sp^3 hybridisation with a FWHM the same as that measured for diamond. The ratio of Gaussian to Lorentzian functions comprising the Voigt profile should be the same as the ratio needed to get the best fit in the calibration spectra of diamond and graphite (after compensation for the charging effects). However, this method does not account for any C bonded to O (which might arise as a result of hydrocarbons, water, oxygen and other adsorbates picked up when the film was transported through air), and when applied to our spectra gave inconsistent values for the $sp^2:sp^3$ proportion. Merel et al. [10] attributed a peak at 285.6 eV which was 1.3 eV higher in energy than that of their sp^3 peak (E_{sp^3}) to C bonded to O. We have therefore included this third curve to the fitting procedure, centred at an energy of ($E_{sp^3}+1.3$) eV.

The curve fitting was done using XPSpeak 4.0 software, with Newton’s iteration method and 300 iterations. The three-curve fitting procedure resulted in a much better fit to our data than the previous two-curve procedure. Fig. 2 shows an example of an XPS curve fitted using the (a) two-curve and (b) three-curve

![Fig. 1. An example of a wide XPS spectrum from an a-C:H film grown at 10 mTorr and with a DC bias of −100 V.](image1)

![Fig. 2. Example of the fits of the C 1s peak from an XPS spectrum from Fig. 1, fitted using (a) the two-curve method and (b) the three-curve method.](image2)
methods. For our data, all curves were defined as 20% Lorentzian, 80% Gaussian (as used by Leung et al. [9]). The sp3 peak was fitted allowing both the FWHM and the binding energy to vary, whilst the sp2 peak had a variable FWHM but a position fixed at ($E_{sp^3}−0.5$) eV [9]. The C–O adsorbate peak was also fitted with a variable FWHM, but its energy was fixed at ($E_{sp^3}+1.3$) eV. It was found that the FWHM of both the sp3 peak and the sp2 peak tended to be wider than those from diamond and graphite. This has been attributed to environments within the DLC films with mixed sp2 and sp3 bonding. The FWHM of these peaks tended towards the values found by Leung et al., which were 1.4 eV for sp3 carbon and 1.3 eV for sp2 carbon. One feature of XPS analysis, which should be highlighted is that it is only the top few surface layers which are analysed. Therefore, any sp2:sp3 ratios calculated using XPS data will represent the surface values, and not necessarily those in the bulk. It is known that for ta-C films the surface layers are often slightly richer in sp2 carbon than the bulk, and this may be true for a-C:H films also.

Microcombustion analysis was performed on three films grown with low, medium and high DC bias values to determine the H content of the film. For these experiments, the films were grown onto glass slides covered in Al foil. The Al foil was then dissolved in concentrated HCl (11.56 M) leaving inert DLC flakes floating on the surface. The mixture was filtered, washed with water and the flakes were left to dry overnight. Sufficient deposition runs were performed to obtain a few mg of solid DLC. Microcombustion then gave the ratio of C:H within the film to within 1%.

LRS was performed using a Renishaw 2000 spectrometer operating at a wavelength of 514.5 nm. The spectra were fitted using both Gaussian and Breit–Wigner–Fano (BWF) [11] lineshapes for both the G and D bands. The BWF lineshape is commonly used to provide an estimate of the sp2:sp3 ratio in hydrogen-free a-C films (from the asymmetry of the G peak in the absence of a D peak). Curve fitting with the BWF line shape has been used to measure this asymmetry, and to quantify it using a variable called the skewness factor, Q (where $1/Q\sim0$ corresponds to a pure Lorentzian line shape). Gilkes et al. [12] have shown that films high in sp3 content display much more symmetrical peaks, characterised by large (negative) values of Q. However, use of the BWF lineshape to fit G-peaks in LRS spectra of a-C:H films has yet to be reported.

3. Results and discussion

The percentage of sp3 hybridised C in films grown at 10 mTorr as a function of deposition DC bias is shown in Fig. 3. The sp3 content has a constant high value of approximately 70% for low biases, and then rises to a maximum at approximately 150–200 V, before rapidly decreasing at yet higher bias values. This can be explained, since at low DC bias values the ion impact energy is too small to disrupt the carbon network, and also too small to remove H from the film by sputtering. Thus, the films probably consist of a relatively soft hydrocarbon polymer. The surprisingly high sp3 content could be explicable if many of the sp3 carbon bonds are terminated by hydrogen atoms, rather than bonded to other C atoms. As the DC bias is increased, the ions now have sufficient energy to sputter H, and also to sub-plant. The C network close to the surface then rearranges itself to form C–C sp3 bonds, producing a hard diamond-like film. At even higher ion impact energies, the C network is sufficiently damaged throughout the bulk that subsequent long-range reconstruction results in predominantly large graphitic sp2 structures. These results are consistent with the findings of Fallon et al. [13] who found the highest sp3 ratio in their hydrogen-free a-C films occurred at an ion impact energy of ~100 eV. However, Fallon et al. found that the sp3 content dropped sharply at ion impact energies of less than 100 eV. The results are also consistent with the models of Angus and Hayman [14] and Robertson [15], who showed that the kinetic energy of ions impacting the substrate at approximately 100 eV is dissipated into a very small near-surface volume, leading to preferential sp3 structuring. Studies of a-C films grown by pulsed laser ablation of graphite also found that optimal conditions for growth of high quality DLC films with >90% sp3-bonded C atoms involved impact energies ~100 eV [16].

Microcombustion results provide extra evidence for this mechanism. Films deposited at a bias of −25 V contained considerably more H (7%) than those deposited at −150 V (3%) and −300 V (2%). This is consistent with the findings of Tamor et al. [17], who also found an increase in H content with decreasing DC bias in a-C:H films. Thus, for a-C:H films the conclusion...
Fig. 4. A typical laser Raman spectrum (514.5 nm excitation) from an a-C:H film showing the prominent G peak (1580 cm⁻¹) and smaller shoulder (1350 cm⁻¹) due to the D band. The fitted curves are also shown.

Fig. 5. The ratio of the intensities of the D peak, \(I_D\), and G peak, \(I_G\), plotted against the fitted G peak FWHM, for a number of different DC bias values. Different values for \(I_D/I_G\) and G peak FWHM were obtained for each DC bias value by changing the process pressure from 10–50 mTorr, which affected the ion impact energy and therefore the structure and composition of the films.

4. Conclusions

We have shown that XPS and laser Raman spectroscopy can be used to derive structural information about the localised bonding with a-C:H films. The fact that films with apparently high \(sp^3\) contents can have poor...
mechanical properties has been found to be due to the high H content of these films. This highlights the fact that sp³ content alone is not a reliable measure of the properties of hydrogen containing DLC films. This might also hold true for DLC films containing other elements, such as those doped with N or P. We have also demonstrated use of the three-curve fitting method for XPS data gives precise values for sp²:sp³ ratios within the films, and gave values consistent with results from microcombustion and apparent hardness. Thus, we feel that compared to previous fitting methods, the three-curve method is a much more reliable and accurate method to reliably obtain such data from a-C:H films.

Acknowledgments

The authors wish to thank Mike Ashfold and other members of the diamond group at Bristol for advice and helpful comments.

References